Table of Contents

Introduction .. 3
 Nominated Research Outputs (NROs) / Other Research Outputs (OROs) 4

Web of Science (Clarivate Analytics) ... 5
 Find who has cited your papers (Author metric)... 5

InCites Journal Citation Reports (JCR) .. 6
 How do I find Journal Citation Reports? .. 6
 To find a single journal’s Impact Factor (JIF) (Journal metric) .. 6
 To find the ranking of a single journal within a category (journal metric) 7
 To find other journals within the same category of a journal .. 9
 To find all the journals listed in a category .. 9
 To compare journals within a category (Journal metric) ... 11
 How to use InCites JCR Data to describe your research impact .. 13

Web of Science ResearcherID (Tip sheet) ... 14
 What is ResearcherID? .. 14
 Why should I care? .. 14
 What do I need to do? ... 14
 Top tips to make the most of Web of Science ResearcherID .. 15

Scopus (Elsevier) ... 16
 Find who has cited your papers (Author metric).. 16
 Field Weighted Citation Impact (FWCI) (Article and author metric) 17
 Find the CiteScore and SNIP (Journal metrics) ... 18
 Find the SCImago Journal Rank (SJR) and Quartile Ranking of a journal (Journal metrics) ... 19
 How to use Scopus data to describe your research impact .. 21

Scopus Author Identifier (Tip sheet) .. 22
 What is it? ... 22
 Why should I care? .. 22
 What do I need to do? ... 22
 Top tips to make the most of Scopus Author Identifier ... 23
 Don’t forget! ... 23

Google Scholar Profile (Tip sheet) .. 24
 What is a Google Scholar Citations Profile? ... 24
 Why should I care? .. 24
 What do I need to do? ... 24
 Top tips to make the most of your Google Scholar Citations Profile 25
Don’t forget!! .. 25
Need help? .. 25

H-index (Author metric) .. 26
Three key factors may affect your h-index ... 26
Find your h-index: Web of Science ... 27
Find your h-index: Scopus .. 29
Find your h-index: Google Scholar .. 31
Find your h-index manually ... 33

Publish or Perish ... 39
Author Impact Search ... 39
Google Scholar Query .. 43
Publication/Journal Impact Search .. 44
How to use Publish or Perish data to describe your research impact 45

ORCID (Tip sheet) .. 47
What is ORCID? .. 47
Why should I care? ... 47
What do I need to do? .. 47
Top tips to make the most of ORCID ... 48
Don’t forget! .. 48
Need help? ... 48

ORCID: Importing BibTeX files (Tip sheet) ... 49
Why should I care? ... 49
What do I need to do? .. 49
A. MyResearch ... 49
B. Reference Management software ... 52
C. Google Scholar ... 52
Need help? ... 52

Patents ... 53
Scopus patent search .. 53
The Lens ... 54
Google patent search .. 56

Contribution to Research .. 58
ResearchGate ... 59
Altmetrics ... 60
Google News ... 61
Publons .. 62

Beans in the best position for PBRF 2018 ... 63
Library Support .. 64

Appendix: PBRF presentation to the Anatomy Department, August 2017 by Dr Michele Coleman, Divisional Office, Division of Health Sciences. ... 65
Introduction

The Library has developed a guide from which you can access a variety of tools for measuring your research. Access the Research Publishing and Impact guide from the Library homepage under Services for Research http://otago.libguides.com/research_publishing_impact.

In the Research Publishing and Impact guide choose the Measuring Impact tab. There are separate pages for Journal, Author and Citation Metrics, as well as a page for Books and Other Formats.

Journal metrics include:

- Journal Impact Factor (JIF), CiteScore, Source Normalised Impact per Paper (SNIP) & Scimago Journal Rank (SJR)
- Field Weighted Citation Impact (FWCI) & Category Normalised Citation Impact (CNCI)
- Journal h-index

Author metrics include:

- Citation counts per paper
- h-index

If you have any particular issues using these tools, please contact your Subject Librarian.
To help you collect the data for your NROs and OROs, you might like to make a copy of this example Recording Sheet. Simply download a copy as an .xlsx spreadsheet.

NRO / ORO Recording Sheet https://goo.gl/rmBhdJ

Nominated Research Outputs (NROs) / Other Research Outputs (OROs)

The (up to) 4 NROs and (up to) 12 OROs make up 70% of your Evidence Portfolio.

Your Evidence Portfolio makes up 55% of the PBRF submission. (Another 25% is related to postgraduate degree completion, and 20% is based on external research income.)

See appendix at the end of this guide for a copy of the presentation by Michele Coleman, Division of Health Sciences delivered to the Anatomy Department, August 2017. In this presentation Michele talks about the Evidence Portfolio, how to present your information, how it is scored, impact and engagement and the differences for new and emerging staff.
Web of Science (Clarivate Analytics)

Web of Science is a citation database that includes 12,500+ high-impact journals in Science, Social Sciences and Arts & Humanities as well as conference papers. Web of Science metrics are the most well-known and perhaps the most authoritative for the PBRF round in Health Sciences.

Find who has cited your papers (Author metric)

A primary author metric is the number of times that an article has been cited.

a) From the Web of Science search page enter the title of the journal article; select Title from the drop down menu, then click Search:

b) Click on the number of times cited to link through to those articles that have cited it (e.g. 25 in this example):

Note that the number of citations refers to citations from other Web of Science-indexed journals i.e. the 12,500+ journals in the Web of Science Core Collection.
InCites Journal Citation Reports (JCR)

The JCR used to be part of the Web of Science, but is now found on the InCites platform owned by Clarivate Analytics. The JCR is a primary resource for journal metrics.

How do I find Journal Citation Reports?

Journal Citation Reports (JCRs) can be found from a link on the Web of Science interface:

![Web of Science Interface](image1)

JCR is also available from the Library’s Article Databases link from the home page www.otago.ac.nz/library/databases/index.php (under ‘J’ for Journal Citation Reports):

![Journal Citation Reports](image2)

To find a single journal’s Impact Factor (JIF) (Journal metric)

On the front page of InCites Journal Citation Reports enter the title of your journal in the ‘Go to Journal Profile’ box, choose it from autocomplete suggestion list and then click on the Search icon:
The results display key information about the journal, including many years of journal impact factors. The 2017 data should become available in late June 2018.

The Journal Impact Factor (JIF) is the average number of times articles from the journal published in the previous two years (e.g. 2015-2016) have been cited in the JCR year (e.g. 2017). The Impact Factor is calculated by dividing the number of citations in the JCR year by the total number of articles published in the two previous years.

E.g. Journal of Anatomy:

To find the ranking of a single journal within a category (journal metric)
At the bottom of the screen above scroll down and click ‘Rank’ on the left:
The category that the journal has been assigned will be listed at the top and the journal’s ranking and quartile ranking (based on Journal Impact Factor) within that category will be listed by year below. (Please note that a journal can be placed in more than one category).

E.g. *Journal of Anatomy* is ranked 3rd out of the 21 journals in the category of Anatomy & Morphology which makes it a Q1 journal (Q1 = Quartile 1 = in the top 25% of the journals in the category) in the 2016 JCR year.
To find other journals within the same category of a journal

Once you have looked up the journal, click on the ‘Categories’ heading. (Note that a journal can be placed in more than one category).

Once the category has been selected, a list of journals within that category will be listed by default in order of highest to lowest ranked by Journal Impact Factor.

E.g. In the category of Anatomy & Morphology the top journal is Brain Structure & Function:

To find all the journals listed in a category

On the front page of InCites Journal Citation Reports pick the ‘Select Categories’ box on the left:
Select the category from the scrollable box. Then scroll down to the bottom of the page and click on Submit.
Journals are initially ordered by their ranking based on Journal Impact Factor, but can be reordered by clicking on the different column headings at the top:

The column heading that the journals are sorted by will be highlighted in orange like “Journal Impact Factor” above.

To compare journals within a category (Journal metric)

When you have the list of journals within the category choose one or more journals (or Select All from the top menu) and click on ‘Compare Selected Journals’:
Once you have selected the journals you want to compare, choose the metrics you want to use from the left-hand menu and click **Submit**. You can see the journals have now been compared by the metric you have chosen:
Notes

- Journals with review articles have higher impact factors – more people read these to remain current and tend to cite them in subsequent research.
- Impact factors can be biased estimates because non-articles increase a journal’s impact factor, e.g. letter to the editor… all citations are included in the numerator but only articles in the denominator.
- Avoid comparing impact factors from different fields of research as the number of references per paper can vary within fields or sub-fields.
- A journal’s impact factor is no indication of how heavily a specific article within has been used.
- A few articles in a journal can contribute disproportionately to the total cites, which can skew the journal’s impact factor.
- Gaming occurs when a journal editor asks you to cite other articles in that journal. Clarivate Analytics blacklist a journal once this is known to have occurred.

How to use InCites JCR Data to describe your research impact

- Use citation count data to describe the value of your work – e.g. x citations in the last x years.
- Describe the journal in which you were published as having an InCites Journal Impact Factor of x.xxx (over 2 years) in the JCR year (e.g. 2016).
- Use the Rank of the journal within its subject category and its Quartile Ranking, based on Journal Impact Factor.
- Always qualify your comments with the company and relevant date range that your metrics come from.

Need help?

For more information about Journal Citation Reports, please contact your Subject Librarian. A list of Subject Librarians can be found on http://otago.libguides.com/liaison
Web of Science ResearcherID (Tip sheet)

This tip sheet explains how Web of Science ResearcherID can help you.

What is ResearcherID?

Web of Science ResearcherID is a unique number/identifier registered to a researcher. (The number includes the year you registered.)

Web of Science is a citation database covering journal articles, books and conference proceedings in health sciences, sciences, arts and humanities.

You will need to register to get your ResearcherID number (your ResearcherID is not automatically generated when you have work listed in Web of Science). You can then fill in your profile information (last name, first name, institution, country, keywords) and build your “My Publications” list by uploading your works from Web of Science databases.

Once you have created a ResearcherID and added your publications you will be able to use it to find collaborators and get citation metrics from your publication list.

Why should I care?

A Web of Science ResearcherID:

- Connects you to your work
- Eliminates name ambiguity
- Improves discoverability of your work
- Stays with your throughout your career
- You can link your Web of Science ResearcherID to your ORCID

What do I need to do?

Registering for a Web of Science ResearcherID is simple, free, and only takes about 30 seconds. Just go to http://www.researcherid.com/SelfRegistration.action and fill out the form; first name, last name, email address and the compulsory “how did you hear about us?” question. You will be contacted by ResearcherID.com at the email address you provide.
Top tips to make the most of Web of Science ResearcherID

- You can control whether your profile is public or private, so you don’t have to share if you don’t want to. You can change the settings when you are logged into your account.
- You can create and place an image graphic on your web site to show your membership in ResearcherID. When you hover your mouse over the badge it displays a real-time summary of your ResearcherID Profile.
- You can update your biographical profile information to flesh your profile out by clicking on “Manage My Profile”.
- You can view citation metrics for Web of Science items, search to find collaborators, and review publications lists.
- You can designate an administrator/Research Assistant at the University of Otago to update your ResearcherID publication lists – see instructions at http://images.webofknowledge.com/WOKRS59B4/help/WOS/hp_my_researcherid.html
- Link your ResearcherID to your ORCID. When you sign into your ResearcherID account you will see an option to associate your profile with an ORCID. You will be asked to register (if you do not already have an ORCID) or to sign in if you already have one. Once you have logged into your ORCID you will need to authorise data exchange between the two systems.
- Use your ResearcherID when you submit publications, apply for grants, and in other research workflows to get credit for your work.

Don’t forget!

You will need to keep everything accurate and up-to-date yourself as your ResearcherID does not update your publications automatically. You will need to add your latest articles to your Web of Science ResearcherID.

Need help?

For more information about your Web of Science ResearcherID, please feel free to contact your Subject Librarian (see http://otago.libguides.com/liaison), or go to http://www.researcherid.com
Scopus (Elsevier)

Scopus is a citation database that includes 23,000+ peer-reviewed journals (as well as 85,000 books, 6.5 million conference papers and 24 million patents) covering science, technology, medicine, social sciences, arts and humanities.

The Scopus database itself has citation counts and h-index, but to get other metrics from Scopus data there are two other websites to use:

- www.scimagojr.com/ - Scimago Journal Ranking (SJR)
- journalmetrics.scopus.com/ - CiteScore

Find who has cited your papers (Author metric)

a) On the Scopus website (https://www.scopus.com) enter the title of the journal article. *Article Title, Abstract, Keywords* is selected by default. Click Search:

![Scopus Document search](image)

b) Click on the number of times cited to link through to the articles that have cited the article (e.g. 34):

![Cited articles](image)
Field Weighted Citation Impact (FWCI) (Article and author metric)

This is a SciVal metric based on Scopus data (similar to Clarivate Analytics’ *Category Normalised Citation Impact* metric). FWCI is the ratio of the total citations actually received by an article, and the total citations that would be expected based on the average of the subject field.

A FWCI of:
- Exactly 1.0 means that the article performs as expected for the global average.
- >1.0 means that the article is more cited than expected (according to the global average e.g. 1.48 means 48% more cited than expected).
- <1 means that the article is cited less than expected according to the global average.

Field-Weighted Citation Impact is a *normalised* metric i.e. it takes into account the differences in disciplines (e.g. researchers working in fields such as medicine and biochemistry typically produce more output with more co-authors and longer reference lists than researchers working in fields such as mathematics and education; this is a reflection of research culture, and not performance).

The FWCI for an article can be found in the Scopus database (https://www.scopus.com):

FWCI can also be applied across a group of articles e.g. the entire output of a researcher e.g. Open SciVal (http://scival.com) in the Overview module. Open Researchers and Groups. Define or select a researcher and you will be shown his/her overall research performance:

One can also get a FWCI for a Department:

Or a University:
Find the CiteScore and SNIP (Journal metrics)

CiteScore measures the ratio of citations per article published in the journal. It is a raw indication of the average number of citations a paper published in the journal will likely receive. CiteScore is the Scopus version of the Journal Impact Factor.

It calculates the average number of citations received in a calendar year by all items published in that journal in the preceding three years (cf. Impact Factor in Web of Science which uses two years). All types of documents (research articles, review articles, conference proceedings, editorials, errata, letters, notes, and short surveys) are included in the CiteScore calculation. (Although articles in press are included in Scopus they are not included in the calculation.)

CiteScore is not normalised for the subject field, so numbers cannot be compared across subject categories. When it is normalised for citations in a subject field CiteScore becomes Source Normalised Impact per Paper (SNIP).

The SNIP measures citation impact by weighting citations based on the total number of citations in a subject field. It allows direct comparisons of journals in different subject categories. The SNIP is defined as the ratio of a journal’s citation count per paper and the citation potential in its subject field. (The impact of a single citation is given a higher value in subject areas where citations are less likely, and vice versa.)

Note that SNIP, CiteScore (and SJR) metrics update continuously in real time as Scopus data is updated. “This means that with each data refresh, all values (current and previous years) are recalculated and refreshed.”

To find the CiteScore, CiteScore Rank, SNIP and SJR for a journal go to this website: https://journalmetrics.scopus.com/ (2016 CiteScore data became available from May 2017.)

a) Type in the journal name in the central Search titles box (a list of journals to choose from will appear), choose a year, refine by a subject area, then click Search:

![Search results screenshot]

b) Change years to find journal impact metrics for previous years.

c) Click the CiteScore Rank to find journals ranked above and below your journal.
Find the SCImago Journal Rank (SJR) and Quartile Ranking of a journal
(Journal metrics)

SJR is a so-called ‘prestige’ metric based on the concept that not all citations are equal. SJR factors in the importance (‘prestige’) of the citing journal. (For example, a citation from *Nature* is ‘worth more’ than a citation from e.g. the *Journal of irreproducible results.*)

a) To find the SJR to go to this website: www.scimagojr.com/ (you can also see the SJR from the previous screen at https://journalmetrics.scopus.com; it’s the last metric on the right)

b) To search for a specific journal enter the title in the search box and click the search icon (or press Return):

![Journal Rankings](image)

```
SJR
Scimago Journal & Country Rank
```

```
Journal of anatomy
```

c) Note that you may need to choose your specific journal from a list of journals:

![Search Results](image)
d) The information about the journal includes a list of its categories. The Quartiles are colour-coded (Q1 = green, Q2 = yellow, Q3 = orange and Q4 = red). There are other graphics available, further down the page.

e) To see its actual rank, you need to click on one of the hyperlinked Subject Area and Categories. The list of journals in that subject category will be ordered by SJR. (For example, the Journal of Anatomy has an SJR of 1.022 in 2016.) Based on the SJR the Journal of Anatomy is ranked 9th of 42 journals and therefore has a Q1 quartile ranking (top 25% of journals in that field) in the subject category of Anatomy.
How to use Scopus data to describe your research impact

- Use citation count data to describe the value of your work – x citations in the last x years.
- Describe the journal that you were published in as having a Scopus CiteScore of x.xxx
- Use the rank of the journal within its subject category and its Quartile Ranking, based on SJR.
- Always qualify your comments with the company and relevant date range that your metrics come from.
- Use the same company’s impact metrics rather than mixing metrics, as they are not comparable i.e. do not mix Web of Science & Scopus metrics).
Scopus Author Identifier (Tip sheet)

What is it?
Scopus Author Identifiers are unique numbers that are automatically assigned to each author in the Scopus database. (Scopus is a bibliographic database owned by Elsevier and includes over 23,000 titles from more than 5,000 publishers.)

Scopus Author Identifiers group together all documents in Scopus written by an author. This is particularly useful for distinguishing between authors with common names and authors with name variants.

Scopus Author Identifiers are part of Scopus author profiles. The profiles reflect author affiliations, publications, citation counts, cited papers, h-index, co-authors and lists subject areas.

Why should I care?
A Scopus Author Identifier:
- Connects you to your work
- Eliminates name ambiguity
- Improves discoverability of your work
- Stays with you throughout your career
- You can link your Scopus Author Identifier to your ORCID
- SciVal works with Scopus Author Identifiers

What do I need to do?
If you have published in a journal that is indexed by Scopus you are automatically assigned a Scopus Author Identifier.

To find your Scopus Author Identifier search for your name using the ‘Author search’ and then choose your name from the results. Under your name and affiliation, you should see your ‘Author ID’.

Conduct an <Author search>

1. If you have more than one author entry, you will need to merge these multiple entries (as they will have different Scopus Author ID’s). If unsure, click the author name to view the author profile and list of publications.

2. Once satisfied, place a tick in the box beside the relevant author names & click the tab <Request to merge authors>. Scopus will merge the author profiles in six weeks or less.
To send your documents to ORCID - at the author page where your list of publications is shown, click <Add to ORCID>

Top tips to make the most of Scopus Author Identifier

- Check your Scopus Author Identifier profile to make sure that all the articles have been authored by you – sometimes articles written by others are attributed to the wrong profile in error.
- Search Scopus for the articles that are NOT listed in your Scopus Author Identifier profile – sometimes these have been attributed to another author with the same or similar name to yours.
- **You can easily correct any issues with your Scopus Author Identifier profile by clicking on ‘Request author detail corrections’ in your profile (remember it can take a few weeks for corrections to show).**
- Make sure all the name variants you have used in your journal articles in Scopus are tied into your one Scopus Author Identifier.
- Link your Scopus Author Identifier to ORCID.
- Scopus lists patents as well, so make sure any patents that you have in Scopus are linked to your Scopus Author Identifier.
- Use your Scopus Author Identifier when you submit publications, apply for grants, and in other research workflows to get credit for your work.
- Use SciVal to visualise your performance, benchmark your performance and look for academic collaborators etc.

Don’t forget!

You will need to keep everything accurate and up-to-date so check periodically that your latest articles have been attributed to your Scopus Author Identifier profile.
Google Scholar Profile (Tip sheet)

This tipsheet explains how creating a Google Scholar Citations Profile can help you.

What is a Google Scholar Citations Profile?

- A page that appears at the top of the results list when someone searches for your name in Google Scholar https://scholar.google.co.nz/. It is a simple way to keep track of citations to your work, graph them over time, see who has cited you, and view citation metrics.

![Google Scholar Profile Example](image)

© 2015 Google Inc, used with permission. Google Scholar is a trademark of Google Inc.

Why should I care?

- Increase your “Google-ability”.
- Keep tabs on colleagues, co-authors, and competitors.
- Improve the accuracy of data about you in Google Scholar.
- You won’t be confused with other people with similar names to yours.
- Your research will be easily discoverable by people interested in your work.

What do I need to do?

A Google Scholar author profile is quick, free to set up, and simple to maintain.

- Just go to: https://scholar.google.co.nz/citations and Sign in with your Google Account (it is best to use a personal rather than institutional account, in case you change institutions. If you don’t have an account, you can create one).
- Confirm the spelling of your name, and enter your affiliation, interests, etc.
- Enter your institutional email address (you’ll need this to make your page public).
- You’ll see groups of articles you may have written. Either Add all articles in each group, or click on See all articles to select and add specific articles from the group.
- If you don’t see your articles, enter search terms, click Search, and add your article/s.
- Once you’ve finished adding articles, you can choose whether updates should automatically be applied to your profile, or if you’d prefer to review them first.
- Finally, you will see your profile! This is private until you make your profile public.
Top tips to make the most of your Google Scholar Citations Profile

Make your profile public
- You may wish to upload a professional looking photo.
- Visit your university email inbox and click on the verification link.
- You may wish to click on Preview public version to see what your page will look like.
- Click the Make it public link next to My profile is private.

Remove any articles that are not yours
- Select the articles you would like to remove.
- Choose the Delete option from the Actions menu.

Add any missing articles
- Select the Add option from the Actions menu.
- In the search box, enter the title, keywords, or your name to find additional articles.
- Either Add all articles in each group, or click on See all articles to select and add specific articles from the group.
- If your search doesn't find your article, click Add article manually. Then, type in the title, the authors, etc., and then click Save (citations may take a few days to appear).

Merge duplicates
- Click on the Title/Author column header to sort your articles by title.
- Select the checkboxes next to the duplicate entries, which should now be adjacent.
- Choose the Merge option from the Actions menu.
- You will then see both citations for the article listed.
- Click Select next to the best citation to the article (you can edit it later if you wish).
- Click Merge.
- Your citation counts and citation metrics will automatically update to include both.

Edit incorrect descriptions
- Click the title of the article and then click the Edit button. When you finish making your changes, click on the Save button (citations may take a few days to appear).

Link to your public profile
- You can provide a link to your public profile, from other websites or profile pages.
- Select the URL for your profile, which you can add to your pages, or email to your colleagues, e.g. https://scholar.google.co.nz/citations?user=qc6CjYAAAAJ&hl=en

Don't forget!!!
Remember to maintain your profile, to ensure that any new works are included, and make sure that any works that are not yours are not listed on your profile. You can manually add articles at any time, review any changes, or have your list of articles updated automatically.

Need help?
For more information about Google Scholar Citation Profiles, please feel free to contact your Subject Librarian (see http://otago.libguides.com/liaison), read the FAQs at http://bit.ly/gschelp, or Contact Google Scholar Support https://support.google.com/scholar/contact/general
H-index (Author metric)

The h-index is a personal metric of ‘impact’ over the length of your career (or the range of years covered by the particular source database), based on citations to your work. Your h-index should increase with time (as your articles should increase their citations over time) so longer career researchers should (on average) have higher h-indices than early- or mid-career researchers.

Some New Zealand titles are not indexed by Web of Science or Scopus so in these cases manually calculating your h-index might be advantageous.

An h-index is the distribution of citations vs. the number of published works. The h-index is the number of papers (N) with at least N citations each. For example, an h-index of 8 means that at least 8 of your papers have been cited at least 8 times: it does not mean that you only have 8 papers!

![Image of h-index distribution]

(Image credit: http://www.benchfly.com/blog/h-index-what-it-is-and-how-to-find-yours/)

Three key factors may affect your h-index

1. The journals indexed by the database. Web of Science includes 12,000+ journals and Scopus includes 23,000+ peer-reviewed journals.
 - H-indices are likely to vary depending on the source data.
 - Journals not indexed by the database will not be included in the h-index
 - No database indexes every journal
2. The name used in your publications
 - Search every variation of your name used in your publications
3. The available journal date range over which you are calculating your h-index.
 - Some databases do not have the same publication year range of journals to index

If you have a number of highly cited book chapters you might like to calculate your h-index manually in order to get the highest h-index possible. By manually calculating your h-index you can include the citation counts from Publish or Perish (from Google Scholar) for books and books chapters.

Possible h-index issues

For the following issues you may need more assistance:

- If you have published under different names (e.g. married and unmarried names)
- If you have ‘alien’ papers incorrectly attributed to you in the databases
Find your h-index: Web of Science

Web of Science calculates the h-index of an author using journal publications from 1900-current. Publications such as book chapters are not included in the list of publications or as sources for the citation count.

a) On the Web of Science web page enter your surname and initial (e.g.: hayne, h); set the option in the drop down box to Author and click Search.

b) If you have published under different names/initials you will need to incorporate these into your search criteria by using truncation (e.g.: hayne, h*) or use Add Another Field and combine another variation using the Boolean term OR:

c) When you get the results screen click on Create Citation Report on the right:
The \(h \)-index is the second metric in the top row (e.g. 37).

d) You can remove citations from the citation report if they are not your papers: just select the papers that are **not** yours, and then click ‘Go’:
Find your h-index: Scopus

Scopus calculates your h-index of an author using journal publications from 1996-current – so if you have publications from earlier than 1996, your h-index could be lower than it actually is. It is possible to determine your h-index in Scopus that includes papers published prior to 1996 and that is the method detailed here. Publications such as book chapters are not included in the list of publications or as sources for the citation count.

a) On the Scopus web page https://www.scopus.com click on the Author search tab:

b) On the next Author search screen enter your last name, first name (or initial) and affiliation (if necessary)
c) Click on your name to see your profile on Scopus. (If you have more than one identifier in Scopus, you may need to request a correction (follow the Request author detail corrections link on the profile screen).

d) Your profile displays, including your h-index in the Scopus database.
Find your *h*-index: Google Scholar

Creating a Google Scholar Citation Profile can help you to discover your *h*-index according to Google Scholar data.

![Google Scholar Profile](image)

Setting up a Google Scholar profile

A Google Scholar profile is a page that appears at the top of the results list when someone searches for your name in Google Scholar. https://scholar.google.co.nz/. It is a simple way to keep track of citations to your work, graph them over time, see who has cited you, and view your citation metrics.

1. Go to: https://scholar.google.co.nz/citations and Sign in with your Google Account (it is best to use a personal rather than institutional account, in case you change institutions. If you do not have an account, you can create one).
2. Confirm the spelling of your name, and enter your affiliation, interests, etc.
3. Enter your *institutional* email address (you’ll need this to make your page public).
4. View groups of articles you may have written. Either Add all articles in each group, or click on See all articles to select and add specific articles from the group.
5. If you do not see your articles, enter search terms, click Search, and add your article/s.
6. Once finished adding articles, choose whether updates should automatically be applied to your profile, or if you prefer to review them first.
7. The profile information will generate Google Citation Indices, including an *h*-index.
8. Make your Profile Public so others can follow your research, hopefully to cite it.
9. Add your Profile URL to your email signature and website, to promote access to your research.

Remove any articles that are not yours
- Select the articles you would like to remove.
- Choose the Delete option from the Actions menu.
Add any missing articles

- Select the Add option from the Actions menu.
- In the search box, enter the title, keywords, or your name to find additional articles.
- Either Add all articles in each group, or click on See all articles to select and add specific articles from the group.
- If your search does not find your article, click Add article manually. Then, type in the title, the authors, etc., and then click Save (citations may take a few days to appear).

Merge duplicates

- Click on the Title/Author column header to sort your articles by title.
- Select the checkboxes next to the duplicate entries, which should now be adjacent.
- Choose the Merge option from the Actions menu.
- You will then see both citations for the article listed.
- Click Select next to the best citation to the article (you can edit it later if you wish).
- Click Merge.
- Your citation counts and citation metrics will automatically update to include both.

Edit incorrect descriptions

- Click the title of the article and then click the Edit button. When you finish making your changes, click on the Save button (citations may take a few days to appear).
Find your h-index manually

You may be interested in working out your h-index manually, particularly if:
- You are on the cusp of a rating B-A or C-B
- There is a marked difference in the number of citations between various databases
- You have articles or book chapters or grey literature that are not indexed by Web of Science or Scopus databases

a) Download your data
- Search for your h-index in Web of Science and Scopus databases and Publish or Perish.
- Once you have done your search you need to export the data in .xlsx format:
 - In Web of Science once you are on the Citation Report page choose Save to Excel File (top right):
 - Under Number of Records choose the record number from 1 to the total number of papers (in this case 127) and click Send:
 - Open the data in Microsoft Excel:
 - You should have an open Microsoft Excel page with the Web of Science Citation Report:
 - Rename the page ‘WoS’ so you can distinguish between the data sets later.
• In Scopus once you have the list of documents ordered by Cited by, choose Export all.

Choosing CSV from the drop down menu and Citation information only then click on Export:

Open the data with Microsoft Excel:

You should have a Microsoft Excel page open with the Scopus data:

The tab is already named ‘Scopus’. This will help later.
In **Publish or Perish** once you have the list of documents, choose to save selected/highlit references to Excel, go to **File → Save as CSV (for Excel)**

![Publish or Perish screenshot](image)

Resave your CSV file as an XLSX file if you want make calculations later.

![Excel screenshot](image)

OR, go to **Copy → For Excel with Header** – brings all ticked references

![Copy with Header screenshot](image)

- Change the tab name to ‘PoP’. This will help so you can distinguish between the data sets later.

 - Create a new .xlsx document and create a tab for each tool you’ve used.
 - Create tabs for all the data to be collected and copy the data into the relevant tab.
This is a citation overview for a set of 87 documents.

h index = 24 (Of the 87 documents considered for the h-Index, 24 have been cited at least 24 times.)

Note: Scopus does not have complete citation information for articles published before 1996.

<table>
<thead>
<tr>
<th>#</th>
<th>Publication</th>
<th>Document Authors</th>
<th>ISSN</th>
<th>Journal Title</th>
<th>Volume</th>
<th>Issue</th>
<th>1951</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1999 Learning & Byrne R W</td>
<td>0140525X</td>
<td>Behavioral</td>
<td>21</td>
<td>5</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1996 Developme Barr R, Dr</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>19</td>
<td>2</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1999 Developme Barr R, H</td>
<td>93920</td>
<td>Child Deve</td>
<td>70</td>
<td>5</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2000 The develo Hayne H,</td>
<td>7357044</td>
<td>Behavioral</td>
<td>114</td>
<td>1</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1997 Developme Hayne H,</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>20</td>
<td>2</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2004 Infant men Hayne H</td>
<td>2732297</td>
<td>Developme</td>
<td>24</td>
<td>1</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2000 Cross-cult Macdonald</td>
<td>9658211</td>
<td>Memory</td>
<td>8</td>
<td>6</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2002 Breaking t Simcock C</td>
<td>9567976</td>
<td>Psycholog</td>
<td>13</td>
<td>3</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2000 Memory re Herbert J,</td>
<td>121649</td>
<td>Developme</td>
<td>36</td>
<td>4</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1999 Deferred in Collie R, H</td>
<td>121630</td>
<td>Developme</td>
<td>35</td>
<td>2</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2003 Imitation fr Hayne H,</td>
<td>1363755X</td>
<td>Developme</td>
<td>6</td>
<td>3</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1995 The Effect Butler S,</td>
<td>121649</td>
<td>Developme</td>
<td>31</td>
<td>4</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1990 Roles of Fi Greco C,</td>
<td>2787393</td>
<td>Journal of I</td>
<td>16</td>
<td>4</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1998 Drawing fa Gross J,</td>
<td>1076898X</td>
<td>Journal of I</td>
<td>4</td>
<td>2</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1987 Categoriza Hayne H,</td>
<td>93920</td>
<td>Child devel</td>
<td>58</td>
<td>3</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1990 The effect Hayne H,</td>
<td>121630</td>
<td>Developme</td>
<td>23</td>
<td>6</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1995 The organi Hayne H,</td>
<td>93920</td>
<td>Child devel</td>
<td>66</td>
<td>3</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1996 The effect Barr R, H</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>19</td>
<td>2</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1995 Contextual Hayne H</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>18</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1986 Ontogeny Greco C,</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>9</td>
<td>4</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2003 The Effect Hayne H,</td>
<td>93920</td>
<td>Child devel</td>
<td>74</td>
<td>6</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1999 Drawing fa Gross J,</td>
<td>1076898X</td>
<td>Journal of I</td>
<td>5</td>
<td>3</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1993 The time-n Rove-Coll</td>
<td>1636383</td>
<td>Infant Beh</td>
<td>16</td>
<td>2</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2000 The ontog Herbert J,</td>
<td>1363755X</td>
<td>Developme</td>
<td>3</td>
<td>1</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b) Clean up your data

Give each sheet of data a different colour. This will be important when you combine it later.

Delete all columns except those listing the fields below, and make these fields populate the same column in each worksheet:

1. Article title
2. Authors
3. Journal title
4. Number of Citations

c) Combine your data

- Create a new tab where you can combine all of the results from each of the different databases
- Copy over the data
- Sort the data by article title. This allows you to identify duplicates, but more importantly you can easily see where an article has higher citations in different indexing services.

Fig 1. Three data sets are combined and have been sorted alphabetically by article title.

This means you can effectively pick the listing with the greatest number of citations. As can be seen in this example, there can be a substantive difference in the number of citations for the same article in different databases.

d) Clean up your citations

Keep the reference with the highest number of citations. In this example the purple reference (Publish or Perish) has been cited 100 times, the black reference (Web of Science) has been cited 86 times, and the blue reference (Scopus) has been cited 42 times.

Fig 2. One reference has been indexed three times, each with a different number of citations.
e) Investigate the citations

Investigate the potential for duplicate citations from Publish or Perish, as they will need merging. Each set of citations from each database may include some unique to another database, so verify the actual citations before reaching a valid total.

f) Sort your citations

Sort the data by citation number descending and identify the h-index. The h-index is the point where the number of articles have been cited at least that same number of times, e.g. in the diagram below, you can see that 26 articles have been cited AT LEAST 26 times.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Year</th>
<th>h-index</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>MOSAICISM WITH A NORMAL-CELL LINE A. GARDNER, JOURNAL OF MEDICAL GENETICS</td>
<td>1994</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>Dominant intermediate Charcot-Marie-Tooth n/Kennerson, American Journal of Human Genetics</td>
<td>2001</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>Prenatal diagnosis of Spinal Lipoprotein Lipidosis, VA H. Prenatal Diagnosis</td>
<td>1994</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>ABSENCE OF LINKAGE OF ABO BLOOD-GF(KANDT, RS EXPERIMENTAL NEUROLOGY</td>
<td>1989</td>
<td>24</td>
</tr>
<tr>
<td>28</td>
<td>Detection of cryptic pathogenic copy number (Bruno, D.L, Journal of Medical Genetics</td>
<td>2009</td>
<td>24</td>
</tr>
</tbody>
</table>

Fig 3. When the number of citations is greater than or equal to the number of articles listed, the rank of the article is the h-index.
Publish or Perish

If you publish in journals not indexed by the Web of Science or Scopus, or you publish books, book chapters or government reports, then Publish or Perish may be the tool that you need to use to find metrics related to these outputs. Publish or Perish is used primarily by Humanities and Social Sciences, but can be of value to all disciplines. It analyses data from Google Scholar. In Health Sciences, Web of Science and Scopus analytics are preferred for PBRF purposes.

Publish or Perish is free and downloadable from http://www.harzing.com/resources/publish-or-perish/ for Windows, Mac and Linux platforms. Version 6, launched late 2017, combines all search options in one screen, querying Google Scholar, Google Scholar Profile, Microsoft Academic, Web of Science, Scopus or CrossRef.

- **Authors** - can be used to find and measure citation impact for a particular author/s.
- **Publication/Journal** - can be used to find and measure citation impact for a particular publication.
- **All words/Any words/None/ Phrase** - can be used for a general search for citations using keywords, title, author, etc. and in combination with publication/s.

Author Impact Search

Find Metrics for:
- yourself as Author
- yourself as Co-Author
- Authors who have significant impact in your field of interest, or
- Authors who have similar impact to you.

Click New and select the Google Scholar query

Enter the Author’s name and click **Lookup** to perform your search

- Think about all of the forms of your name that you have published under
- The recommended format is to use one or more initials the author usually uses
- Include each form of your name within quotation marks
 - e.g. “H Hayne” for an individual author
 - e.g. “H Hayne” AND “J Gross” for co-authors
 - e.g. “H Hayne” OR “J Gross” for co-authors and individual papers
 - e.g. “H Hayne” OR “VH Hayne” for name variants
• Searching is NOT case sensitive (except for the OR)
• Adding initials will narrow results (“CM Brown” retrieves fewer results than “C Brown”)
• Exclude an author prefixed by a ‘-‘ (minus) sign
 o E.g. “H Hayne” “-J Gross”
• You can limit the date range, e.g. between 2012 and 2017
• For more search tips, see Author search.

Too few results?
• Add more variations of your name with OR (e.g. “H Hayne” OR “VH Hayne”)
• Remove second or third initials, so instead of “VH Hayne”, try “H Hayne”
• Expand the publication date range, or remove any date range limits.

Too many results?
• Enter a date range, e.g. between the PBRF date cycle of 2012 and 2017
• Enter one or more names that you want to Exclude, prefixed by a minus sign, e.g.

Reviewing and Sorting Data
• Right-click on any reference to view it in a browser, or to view its citations in Google Scholar
- Remove the tick from any irrelevant results. Unticked results will still be visible in the main window, but only ticked results are included in the **Results** statistics. Right click the Cites column header for Select or Uncheck Cites options.
- Click on any column header to sort by Cites, Rank, Authors, Title, Year, Publication, etc.
- Use **Shift** and **CTRL** keys to select multiple references.

<table>
<thead>
<tr>
<th>Cites</th>
<th>Per Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>A Cronin, J Gross, H Hayne</td>
<td>The effect of instruction on children's human fig... 2017</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>W Zhang, J Gross, H Hayne</td>
<td>The effect of mood on false memory for emot... 2017</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>J Gross, R Barr, H Hayne</td>
<td>The Effect Of Verbal Cues On The Association Be... 2012</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>D Scarf, K Inuma, H Hayne</td>
<td>The Effect Of Verbal Reminders On Memory Res... 2012</td>
</tr>
<tr>
<td>9</td>
<td>2.25</td>
<td>K Inuma, D Scarf, H Hayne</td>
<td>The effect of verbal reminders on memory react... 2013</td>
</tr>
<tr>
<td>1</td>
<td>17.75</td>
<td>J Gross, M Colombo, H Hayne</td>
<td>To have and to hold: Episodic memory in 3-and ... 2013</td>
</tr>
</tbody>
</table>

- To remove all references with ‘0’ citations, click **Uncheck 0 cites**
- You can merge duplicate references (HINT: Sort by Title to quickly identify duplicate references first, including errors)

- Drag and drop one reference on top of another to merge

- Right-click to **Split Citations** for the lines that have been merged.

Saving Results and References

- To save selected/highlit references to Excel, go to File → **Save as CSV** (for Excel)
Resave your CSV file as an XLSX file if you want to make calculations later.

OR, go to Copy to Clipboard, or Copy → Results For Excel with Header – brings all ticked references.

- To save selected references to EndNote, Go to File → Save as EndNote

OR use Save as File... → Results as EndNote
• **Full Query Report** (new in Version 6) contains:
 - Your search terms and other query parameters
 - Data retrieval information: data source, query date, status of the query request
 - **The metrics** that Publish or Perish calculated on the results
 - A formatted list of results, in the order they were received from the data source

Generate a full query report using **Save as...** - this will be written as formatted text in Rich Text Format (RTF), which can be read by most word processors.

• To copy the **Metrics**, go to **Copy (OR Copy to Clipboard)** → **Metrics for Excel with Header** and then **Paste** into an Excel spreadsheet.

Google Scholar Query

Enter one or more pieces of information and click **Lookup** to perform your search; behaves like Google Scholar Advanced Search

• Find citations for individual research outputs (e.g. any missing publications that may not have been included in an author search).
• You can search for a combination of Author, Publication, Keywords, Phrases, and Title Keywords. You can also exclude certain words (use with caution).

 e.g. Publication: Brain and Development

 All of the words: age

 The phrase: memory retrieval

• You can limit your search to ‘Title words only’
Too few results?

- Expand the date range
- Reduce the number of required words in the “All of the words” box
- Add more words in the “Any of the words” box
- Reduce the number of excluded words in the “None of the words” box

Click Lookup again

Too many results?

- Reduce the date range
- Enter additional required words in the “All of the words” box
- Reduce the number of words in the “Any of the words” box
- Enter one or more keywords that you want to exclude words in the “None of the words” box
 (Use with caution, and DO NOT use OR between terms in this box)

Other Potential Uses for a Google Scholar Query

- The phrase search can be used to quickly find citations to particular chapters within books, e.g. “From evidence to policy, programmes and interventions”
- This search can be used to quickly find material on a particular topic (and published in a particular journal, or written by a particular author)

Publication/Journal Impact Search

Enter the Journal Title and click Lookup to perform your search

- Find Metrics for individual journal titles
 - Use quotes around the “journal title”, e.g. “Psychological Science”
 - Is NOT case sensitive
 - You can limit the date range, e.g. between 2015 and 2017 (N.B. The broader the range the longer the search takes to return results)
 - Sort results by title as other similar, but unwanted journal titles may have appeared, e.g. Clinical Psychological Science...
Too few results?

- Expand the date range
- Search for journal title variations

Click Lookup again

Too many results?

- Enter a narrower date range, e.g. between 2016 and 2017
- Enter one or more keywords that you want to exclude (DO NOT use OR in this box)
- Use quotation marks around the “journal title”
- Exclude similar journal titles, prefixed by the minus sign

Click Lookup again

Other Potential Uses for the Publication/Journal Search

- You can use the “Journal title” option to search for citations in an edited book volume by searching for the “title of the book” within quotation marks. e.g. “Do justice and let the sky fall”
 NOTE: you will also need to search for citations to particular chapters (with the Google Scholar Query), because some authors will refer to specific chapters within the book.

My Queries

- The My queries section contains a list of recently executed queries. It also allows you to add further queries, optionally organised in folders (Saved Queries, New Folder/s, that you may want to keep for future reference.
 Tip: Any queries that you execute are automatically added to the My queries folder.

How to use Publish or Perish data to describe your research impact

Citations:
• Does your paper/book/chapter have a high number of citations?
• Is your paper cited more than the average paper published in that journal/book?
• Do you have a high number of citations compared to others in that publication in that year (or other time period)
• Right click on a paper in Publish or Perish to ‘Open Article in Browser’, as listed by the publisher. Article Metrics may be available at that point.
• Right click on a paper in Publish or Perish to ‘Open Citations in your Browser’ in Google Scholar. See:
 o Where you have been cited – geographically (international versus local), and look at the publication (quality) and type (e.g. in books, conference papers, journal articles)
 o Who has cited you (e.g. author = leading academic in your field)
 o When were you cited? Quickly/Long after initial publication?
 e.g. My 2013 paper has already been cited 32 times
 e.g. My book is still being cited 10 years after initial publication
• Is your paper more highly cited than other papers on the same topic (search for key words in the Google Scholar Query search to make comparisons)

Journal Information:
• Does the journal have a high number of citations per paper/year?
• Does the journal have a higher h-index than similar publications?

Metrics
• A full account of what each statistic means is provided in the Help file beside ‘Metrics’.

Exported Data
• If you export a list of your publications to Excel, you can use this to keep track of the number of citations to your work, and update the citation counts for any new citations that you find with additional tools (e.g. other relevant library article databases).
• You can add to the list any missing publications that you find with the Google Scholar Query.
• With the list in Excel you can also easily compute a few key numbers – total citations, average citations per item and reorder the entries in citation order.

You can also export article, author, journal or general search citation data from Scopus or Web of Science to Publish or Perish to compare the metrics, or find other stray cites to your research. Accumulate these in Excel to manually calculate your h-index.
ORCID (Tip sheet)

This tip sheet explains how ORCID can help you.

What is ORCID?

ORCID stands for Open Researcher and Contributor IDentifier.
- It is a unique 16-digit numeric identifier that distinguishes you from every other researcher/scholar. It is a persistent identifier, i.e. it doesn’t matter if you change your name or affiliation etc. it will still link you to your professional activities to ensure your work is identified with you. It is free for an individual to create an ORCID.

ORCID is not a publisher.

It is a non-profit organisation that is supported by a global community of organisational members including research organisations, publishers, funders, professional associations and other stakeholders. ORCID’s main aim is to create and maintain a registry of unique researcher identifiers and link research activities and outputs to these identifiers.

ORCID is the one ID that binds together other IDs you may have and encourages its users to link their ORCID record to their other identifiers;

Link your Scopus Author ID or link to ORCID from your Web of Science Researcher ID and synchronize your publication data with your ORCID record.

If you search for your name and your publications in MyResearch you can download your research outputs as a Bibtex file and upload this into your ORCID.

Why should I care?

An ORCID:
- Connects you to your work (it supports 37 types of “works”)
- Eliminates name ambiguity
- Improves discoverability of your work
- Stays with you throughout your career
- Links your outputs across multiple platforms together
- Is increasingly being asked for by some funding agencies on grant applications
- Requested by some publishers of journals

What do I need to do?

Registering an ORCID is very simple, free, and only takes about 30 seconds.
Just go to https://orcid.org/register and fill out the form.

Enhance your ORCID profile by adding details to your biography, i.e. education, employment, research outputs.
You can also set the privacy settings for each section to being visible to everyone; trusted parties; or only you.

Top tips to make the most of ORCID

- Associate your ORCID with your accounts for Scopus and Web of Science (this means that citations will automatically be added but you may need to check for duplicate records). Once these are connected, you can easily push information back and forth between these services, saving you time and duplication of effort. You can automatically import the same information to multiple places, rather than having to enter it again.

- Post an ORCID Badge on your website, and link to your ORCID from these other sites.

- Get a QRORCID – a QR code to provide a link to your ORCID profile.

- Use your ORCID on your webpage and use it when you submit publications, apply for grants, and in other research workflows to get credit for your work.

- ORCID has privacy settings, which you control. Once you have enhanced your profile you can set custom privacy settings for each item.

- In the future, ORCID is planning to make a way for researchers to post information about their review activity, so if you are on a grant review panel, or review journals or books, you’ll be able to acknowledge these peer reviews activities.

Don’t forget!

You will need to keep everything up-to-date. If you add any new research outputs to OUR Archive, remember to add the handle or stable URL to your ORCID.

Need help?

For more information about ORCID, please feel free to contact your Subject Librarian (see http://otago.libguides.com/liaison), or go to https://orcid.org/help
ORCID: Importing BibTeX files (Tip sheet)

This tip-sheet explains how to import references from MyResearch, reference management software (e.g. EndNote) and a Google Scholar profile into ORCID.

Why should I care?

Sometimes published works are not available through Library databases like Scopus or Web of Science, but if you have records in (A) MyResearch, (B) reference management software (e.g. EndNote, Zotero, Mendeley) or (C) a Google Scholar profile, these items can be added to an ORCID record.

What do I need to do?

A. MyResearch

1. From MyResearch (https://corpapp.otago.ac.nz/publications/), search for your name

1. You will see an option to Export as BibTeX
2. Once you have saved your file (it will have a .bib extension), go to your ORCiD and click on Add Works – Import BibTeX and choose the file.

3. Once you have imported your file into ORCiD you will see a list of your works. You can choose to Save all or click on the save icon for each individual item you wish to save.

4. You will then see a list of the [saved] imported works, choose this link to show more details.
5. You can choose to **Switch view** to see the full citation

6. Remember to make your works public! Choose **everyone**
B. Reference Management software

You can also export records from reference management software (such as EndNote).

1. From reference management software, select the records that you wish to export and find the Export option (right):

2. Choose the Output Style or Export option BibTeX, and save the file somewhere (e.g. Desktop)

3. In your ORCID record, select Add works, choose the Import BibTeX option and follow the above instructions.

C. Google Scholar

Note that all the main browsers are supported except Internet Explorer 9 and earlier.

If you have a Google Scholar Citations profile, you can export a list of publications from your profile to a BibTeX file.

1. Visit http://scholar.google.com and click My Citations at the top of the page. Sign in to your account (if requested).

2. On your My Citations page, select articles to export by clicking the checkbox beside each article. To select all articles in your My Citations list, click the checkbox at the top of the list.

3. Once you have selected the articles you’d like to export, click the Export button, then choose BibTeX.

4. In the dialog box that appears, click the Save button to save the file to your computer.

5. In your ORCID record, select Add works and choose the Import BibTeX option and follow the above instructions.

Need help?

For more information about ORCID, please feel free to contact your Subject Librarian (see http://otago.libguides.com/liaison)
Patents

Only full patents are accepted in the full PBRF, not provisional patents. There are several resources that you can use for checking patents:

a) Scopus patent search
b) The Lens
c) Google patent search

Scopus patent search

a) Do a standard search: if there are patents relevant to your search terms, there will be a link above right, to limit your results to patents, i.e.

b) Once you have a list of patents, click on the title of the patent to be taken to the bibliographic record for the patent:

c) From the details view, if in Espacenet (European Patent Office), there is a link on the left side to find citing documents:
The Lens

- Structured Search: https://www.lens.org/lens/structured-search
- Lens Support Information: https://www.lens.org/support/

On The Lens Structured Search screen you can search by your name (in Inventors) or search for keywords (in Full text) at the top. Or, you can choose other search terms from the drop down menu; Owners, Title, Abstract, Claims, Applicants, and Authors etc.

Further down the front page you can also choose to include the following search terms:

- Dates = published OR filed
- Jurisdiction = NZ (if applicable)
- Document type = Granted Patent

After you have done your initial search you can also limit your search to Granted Patent, for PBRF, by using the Refine Search menu on the left and ticking Granted Patent:
Sort by Publish Date to bring the most recent to the top:

The citation information is contained with the entry:
Google patent search

Use the Advanced Patent Search: www.google.co.nz/advanced_patent_search and type in search terms for the patent you are looking for:

Click on Overview to see the citation information:
The citations of the patent are listed by type:
Contribution to Research

Contribution to research makes up 30% of your Evidence Portfolio. This is a change from 2012 and combines the old Peer Esteem and Contribution to the Research Environment sections, with the addition of some new categories around impact and engagement.

Up to 15 items can be listed. Remember to consider your contribution across all areas:

- A = international
- B = national
- C = local

Uptake and impact (research can have been before 2012) may include your work contributing directly to, e.g. policy, regulation or legislative changes, guidelines, techniques, device, drug or supplement formulation.

Outreach and Engagement refers to activities where people have been active in taking research finding out into the community through, e.g. writing articles for magazines, making TV or radio programmes, talking to community groups.

There are a number of ways this activity may be tracked or measured e.g.: ResearchGate, Almetric.com, Google News, Publons.
ResearchGate

ResearchGate is a scholarly network which provides subscribers with an RG score. Your RG score is worked out based on a combination of your publications listed in ResearchGate, your interactions with other scholars and your reputation.

- RG score\(^1\)
- Impact points

Consider self-archiving pre-prints or post prints or published copies of your work in ResearchGate (if you own the copyright or if the publisher allows it\(^2\)). Content added to ResearchGate generates a DOI which can be read by altmetric services and produce metrics and evidence of impact or engagement.

How you can use the ResearchGate score to describe your research impact

- Go to University of Otago on ResearchGate to find your department https://www.researchgate.net/institution/The_University_of_Otago
- Compare your ResearchGate score with that of your department to put your work in context

For example: Harlene Hayne has an RG score of 39.32 and impact points of 389.62.

\(^1\) See RG Score FAQ https://www.researchgate.net/publicprofile.RGScoreFAQ.html

\(^2\) Discover publisher policies around self archiving using SHERPA/RoMEO database http://www.sherpa.ac.uk/romeo/
Altmetrics

Altmetrics are an attempt to measure the activity surrounding a particular scholarly work by alternative methods such as: mentions or conversations in social media, blog posts, newspaper, government policy documents etc.) Other altmetric sources are available to view on the Measuring Research guide.

Altmetric.com

Altmetric.com is free with limited functionality to individual researchers www.altmetric.com/

- Altmetrics measure article level impact
- Great for capturing impact for new papers not yet cited as well as older works

Altmetric.com has a bookmarklet (www.altmetric.com/bookmarklet.php) that can be added to the toolbar of your browser. This can be used to collect altmetric data about a paper from the DOI.

It’s easy to use: Add the bookmarklet to your toolbar, visit the website of any paper, click on the bookmarklet for article level altmetrics about the paper: If the Altmetric donut doesn’t appear, highlight the DOI and click the bookmarklet again.

Click on ‘Click for more details’

The following screen appears detailing where the mentions are:
If users have an ORCID they can use the Altmetric ID bookmarklet http://www.atlas.jp/a4id/ to generate altmetrics for their whole ORCID profile where articles have a DOI.

Google News

If your work is often cited in the media you might consider setting up an alert using Google News. Utilise the functionality of Google to refine the result by searching for your topic, clicking on News, then click on Search tools, then click on All news.

Note that search specifically on blogs may lead you directly to other academics who may be discussing your work, which could be evidence of uptake, impact or engagement.
Scroll down to the bottom of the page and set up an email alert by clicking on Create alert.

Stay up to date on results for "university of otago".

Publons

Publons (a New Zealand startup, recently purchased by Clarivate Analytics. See https://publons.com) lets you record, show and verify your peer review activity. Upload your peer review history and choose what you want to share. You can then use it as your official reviewer record.

When you sign up to Publons you get credit for reviews (merit points e.g. 2 points for being journal-verified) and you can see the Impact of journals you have reviewed for:
Being in the best position for PBRF 2018

To be in the best possible position for PBRF 2018 you can:

- Make sure all your research outputs are present in MyResearch

- Sign up for an Open Researcher and Contributor ID (ORCID) and connect your Web of Science, Scopus, LinkedIn and every other ID you can (though not ResearchGate currently) to your ORCID

- Go into Web of Science and Scopus and check your name variations and request corrections - merge your author name profiles and affiliations under one unified ID (and then link this to your ORCID)

- Sign up for citation alerts on Web of Science and Scopus so that when your articles are cited you can see which authors and papers have been newly published that have cited your work

Note: All quantitative measurements of impact should be considered in the appropriate context and with full awareness of their differences and limitations. Also, the indexing databases used as sources for publication information will be limited in terms of completeness and accuracy. Always indicate the source of the metrics you use.

Using these metrics beyond PBRF

You can also use these metrics for a variety of purposes:

- Making a case for promotion

- Writing grant applications

- Preparing your CV

- Preparing for a job interview

- Finding a potential research partner/editor/reviewer/supervisor/mentor

- Introducing someone that you don’t know (e.g. a visiting academic/guest speaker) – in a few minutes you can find out what they have published, which of their papers/books is most cited, what they have been working on recently

- Writing tributes or eulogies

- Evaluating tenure/promotion applications

- Pre-Submission checks – before you submit a finished article to an academic journal, check to see if the journal has recently published any other papers on your topic (missing these may not create a good impression with the editor or reviewers).
Contacts for PBRF assistance:

PBRF and Publications Office - Project Manager Mr Lindsay Jenkins
Health Sciences Associate Dean (Research) Assoc. Prof. Peter Dearden
PBRF Office pbrf@otago.ac.nz
Research Advisor - DSM Dr Edwin Meijerink
Research and Development Manager Dr Michele Coleman

Library Support

Liaison Service - supporting research at the University of Otago

Subject Librarians have expertise in research practices, information resources, and teaching support. Our primary goal is to collaborate with academic staff to foster the development of student research skills and the effective practice of academic research at all levels. http://otago.libguides.com/liaison

Subject Guides http://otago.libguides.com/
There is a Subject Guide for almost every subject at the University of Otago (over 100 in total). Subject Guides bring together all the library’s resources that will be useful as a starting point for research in that subject. These include journals & databases, books, referencing & writing, multimedia resources, etc.

EndNote

The University of Otago supports Endnote Reference Management software. The Library has a Library guide http://otago.libguides.com/managingreferences and Subject Librarians can help you using Endnote.

Blackboard & Moodle

The Library makes resources available where the students need them which includes Library Resources Modules in papers. Resources can be tailored to meet specific paper requirements.

Modules

The Library has created online learning modules that are included in the curriculum across the professional courses.
Appendix: PBRF presentation to the Anatomy Department, August 2017 by Dr Michele Coleman, Divisional Office, Division of Health Sciences.

PBRF 2018
How can I improve my Score?

Dr Michele Coleman, Division of Health Sciences
August 2017